向量的概念及公式(向量计算公式)

时间:2023-07-31 01:52:45来源:

向量的概念及公式?

向量就是既有大小又有方向的量。

向量的计算公式有a+b=(x1+x2,y1+y2)。

向量计算公式?

ab+bc=ac、a

+b=b+a、

(a+b)

+c=a+

(b+c)、a+0=0+a=a和ab-ac=cb。

向量是数学、物理学和工程科学等多个自然科学中的基本概念,指一个同时具有大小和方向,且满足平行四边形法则的几何对象。

在物理学和工程学中,几何向量更常被称为矢量。

许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。

向量运算公式?

向量运算有加法和数量乘法两种运算方式。

1.向量加法公式:

向量a+b的结果是由a点到b再到a+b形成的平行四边形的对角线。

2.向量数量乘法公式:

若k为实数,则向量k*a的长度是|k|*|a|,且方向与a相同(k>0)或相反(k

向量必考公式?

若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。

a//b的重要条件是xy'-x'y=0。

零向量0平行于任何向量。

[编辑本段]向量垂直的充要条件

a⊥b的充要条件是a•b=0。

a⊥b的充要条件是xx'+yy'=0。

零向量0垂直于任何向量.

设a=(x,y),b=(x',y')。

1、向量的加法

向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的运算律:

交换律:

a+b=b+a;

结合律:

(a+b)+c=a+(b+c)。

2、向量的减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0

AB-AC=CB.即“共同起点,指向被减”

a=(x,y)b=(x',y')则a-b=(x-x',y-y').

4、数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。

当λ>0时,λa与a同方向;

当λ<0时,λa与a反方向;

当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:

按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律

结合律:

(λa)•b=λ(a•b)=(a•λb)。

向量对于数的分配律(第一分配律):

(λ+μ)a=λa+μa.

数对于向量的分配律(第二分配律):

λ(a+b)=λa+λb.

数乘向量的消去律:

①如果实数λ≠0且λa=λb,那么a=b。

②如果a≠0且λa=μa,那么λ=μ。

3、向量的的数量积

定义:

已知两个非零向量a,b。

作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π

定义:

两个

推荐资讯